コリジョン型 ICP-MS による

環境試料中の金属分析への適応性*

安 部 隆 司**・八重樫 香**・佐々木 和 明** 高 橋 悟**・齋 藤 憲 光**

|キーワード| ① ICP-MS ②有害金属 ③環境基準 ④海水 ⑤底質

1. はじめに

金属分析で ICP-発光と ICP-MS を比較した場 合, ICP-MS の方が ICP-発光よりも数百倍から数 千倍も感度よく測定することができる¹⁾。

環境モニタリングの分析では、少なくとも環境 基準の1/10の値まで測定することが要求される。 この場合, ICP-発光で分析すると10倍の試料濃縮 操作が必要となり、高感度分析が可能な ICP-MS では試料を希釈して分析を行うことになる。

しかし、ルーチン分析を行う場合、試料を10倍 濃縮して ICP-発光で測定するのと、希釈して ICP-MS で測定するのでは、濃縮操作に伴う分析 精度の低下や前処理に要する分析時間が大きく異 なり、ICP-発光よりも ICP-MS の方が断然優れて いる^{2~5)}。

従来のICP-MSは、プラズマガスにアルゴンを 使用するために、アルゴンガスの生成物と質量が 重なる元素の測定ができないという欠点があっ た。近年、反応ガスを使用することによって、ア ルゴンガスとの生成物を壊し、従来のICP-MSで は測定できなかった元素の測定を可能とするコリ ジョン型と呼ばれるICP-MSが開発された。植 物⁶⁾・生体⁷⁾試料など今までは妨害塩類が多く存 在するため測定の難しかった試料の分析をコリ ジョン型 ICP-MS で試みられている。

今回、このコリジョン型 ICP-MS で海水を含む

環境水や夾雑物の多い底質試料を対象にルーチン 分析への適用性について検討したところ,環境基 準値が定められている測定項目の一斉分析が可能 であったので報告する。

2. 実験方法

2.1 測定元素

測定対象とした元素は,岩手県が監視項目とし て定める環境水中14元素(¹¹B, ²⁷Al, ⁵²Cr, ⁵⁵Mn, ⁵⁶Fe, ⁵⁸Ni, ⁶⁵Cu, ⁶⁶Zn, ⁷⁵As, ⁷⁸Se, ⁹⁵Mo, ¹¹¹Cd, ¹²¹Sb, ²⁰⁸Pb)と底質中5元素(⁶⁵Cu, ⁶⁶Zn, ⁷⁵As, ¹¹¹Cd, ²⁰⁸Pb)である。

2.2 試 薬

1000mg/lの各標準溶液(Asのみ100mg/l),硝酸および塩酸は、関東化学㈱製の原子吸光用を用い、内標準元素(1000mg/l,Beのみ100mg/l)および過酸化水素は、和光純薬工業㈱製の原子吸光用を使用した。なお、精製水は、イオン交換した後に Millipore 社製 Milli-Q Element で精製したものを用いた。

使用する器具の洗浄は,10%硝酸に一昼夜浸漬 し,精製水で洗浄したものを用いた。

2.3 装置と分析条件

コリジョン型 ICP-MS は, Agilent7500c ORS を 用い,表1の条件で分析した。また,試料溶液の プラズマへの導入は,ペリスタルティックポンプ

^{*}Adaptability of Analysis for Metals in Environmental Samples by Collision Type ICP-MS

^{**}Takashi ABE, Kaori YAEGASHI, Kazuaki SASAKI, Satoru TAKAHASHI and Norimitsu SAITO(岩手県環境保健研究センター) (Research Inst. for Env.Sci. and Public Health of Iwate Pref.)

を用いて行い,シールドトーチを装着して各元素 のバックグラウンド低減を図った。

底質は、マイクロウェーブ分解装置(マイルス トーン社製 ETHOS900)を用い、高圧分解容器の 外部温度を100℃に保持した状態で、マイクロ ウェーブパワーを6段階に変えながら分解した (**表 2**)。

これは,高圧分解容器内での急激な圧力上昇に より,高圧分解容器の変形や突沸による内容物の 流出を防ぐためである。

2.4 分析試料

分析方法の検討に用いた試料には,釜石湾で採 水した海水と宮古湾で採取した底質を用いた。

なお,海水試料については,10倍に希釈し0.1 M 硝酸溶液としたものを検液として,ICP-MSで 測定した。

底質は、105℃で2時間乾燥させた後、メノウ 乳鉢で粉砕し、均一にしたものを試料とした。試 料0.5gをテフロン製の分解容器に秤量し、硝酸 9 ml および過酸化水素1 ml を加え、底質試料を 充分に酸に浸漬させた。この状態で分解容器をマ イクロウェーブのローターにセットし、表2の条

ICP-MS	Agilent 7500c ORS
RFパワー	1600W
プラズマガス(Ar)	151/min
キャリアガス (Ar)	0.81/min
サンプリング位置	9.0mm
ネブライザ	Babington type
H2ガス	5.5ml/min
Heガス	5ml/min
測 定	内標準補正法

表1 コリジョン型 ICP-MS の分析条件

表 2 マイクロウェーブ分解のプログラム

Step	Time (min)	Power (W)	Temp (℃)
1	2:00	250	100
2	3:00	0	100
3	5:00	250	100
4	5:00	400	100
5	5:00	600	100
6	20:00	400	100

Total Time 45:00(VENT Time 5:00を含む)

文

分解後,内容物をろ紙5種Bでろ過し,精製 水で100mlに定容したものを検液とした。

3. 結果および考察

3.1内標準の選択

海水と底質では各元素の存在比が異なるため に,同一の内標準を用いて ICP-MS 分析を行うこ とができない。表3に海水と底質の各元素含有 量をそれぞれ示した。

上水など通常の環境水分析では²⁷Al, ⁵²Cr, ⁵⁵Mn, ⁵⁶Fe, ⁵⁸Ni, ⁶⁵Cu, ⁶⁶Znの内標準として ⁵⁹Coが用いられている。しかし,海水中には⁵⁹Co が2.10µg/1と多量に存在するため, ⁵⁹Coを内標 準として用いることができなかった。そこで,目 的元素に比べて,存在量が低くかつイオン化ポテ ンシャルが類似する元素を選定し,内標準の検討 を行った。その結果,海水を分析する時には, ⁵⁹Coに代わる内標準として⁸⁹Yを使用することが 可能であった。

一方, 底質分析では, 海水分析で使用した⁸⁹Y, ¹¹⁵In の存在量が高いため, ⁵⁹Co, ¹²⁵Te, ²⁰⁹Bi を内 標準として用いた(**表 4**)。

表3 海水および底質中の元素含有量

一主	海水1)	低質2)	一主	海水1)	低質2)
儿杀	$(\mu g/l)$	(mg/kg)	儿亲	$(\mu g/l)$	(mg/kg)
Fe	0.22	72000	Со	2.10	0.78
Al	2.46	22000	Yb	nd	0.68
Mg	1410000	17000	Li	300	0.66
Mn	0.37	2800	U	2.28	0.66
Κ	192000	2400	Cr	0.24	0.54
Na	18300000	1680	As	1.56	8.1
Ca	282000	980	Cu	8.1	43.40
Y	nd	116	Be	nd	0.46
Zn	1.77	85	Ni	0.4	0.194
Ba	3.0	34	Cd	0.06	0.15
Pb	0.25	16.8	Br	84000	0.114
Tl	nd	9.2	Bi	nd	0.112
V	22.2	5.2	Ag	nd	0.022
In	nd	5.2	Pt	nd	0.0032
Zr	6.3	2.2	Au	nd	0.0020
В	4800	1.1	Те	nd	nd

1) 釜石湾海水

2) 宮古湾の底質0.5g 採取

表4 海水および底質の分析における内標準物質

一三主々	内標準	善物質
儿亲石	海水	低質
^{11}B	⁹ Be	_
²⁷ Al	⁸⁹ Y	—
⁵² Cr	⁸⁹ Y	
⁵⁵ Mn	89Y	—
⁵⁶ Fe	⁸⁹ Y	
⁶⁰ Ni	⁸⁹ Y	—
⁶⁵ Cu	89Y	⁵⁹ Co
⁶⁶ Zn	⁸⁹ Y	⁵⁹ Co
⁷⁵ As	⁸⁹ Y	⁵⁹ Co
⁷⁸ Se	⁸⁹ Y	—
⁹⁵ Mo	⁸⁹ Y	—
¹¹¹ Cd	¹¹⁵ In	¹²⁵ Te
121 Sb	¹¹⁵ In	—
²⁰⁸ Pb	²⁰⁵ Tl	²⁰⁹ Bi

3.2 検出限界とコリジョンガス

通常の ICP-MS で測定した場合, ArCl や CaCl が干渉するために, As 測定では試料ごとの Cl 濃度で As カウントを補正して濃度を求める必要が あった。同様に, ArO や CaO の干渉を受けるた めに, ⁵⁶Fe は測定不能となり, ⁵⁶Fe を含めての一 斉分析は不可能であった^{1,9}。

コリジョン型 ICP-MS は、反応ガスの選択によ り 「通常の ICP-MS(反応ガスなし)|「H₂を使用 した場合|および「Heを使用した場合|の3通 りの測定を、モードを切り替えながら一度の操作 で分析することができる。そこで各元素の標準溶 液(0.1~12µg/l)を用い、7回の繰返し測定を行 いながら, 各測定モードでの検出限界値を比較し た。検出限界値は、ICP-MS で測定した際のブラ ンクカウント値の3倍濃度で算出した(表5)。そ の結果、「反応ガスなし」に比べ、「H2を使用し た場合」または「He を使用した場合」の方が、検 出限界を低濃度まで測定することが可能であっ た。 [H₂を使用した場合]の5元素(⁶⁰Ni, ⁶⁵Cu, ⁶⁶Zn, ⁷⁵As, ⁹⁵Mo)は, [He を使用した場合]の 検出下限値よりも高い値であったが、他の元素に ついては同等かあるいはそれよりも低い検出限界 であった。とくに56Feは、反応ガスとして「H2 を使用した場合」のみ測定が可能であった。そこ で、本法ではH2とHeの2種類のガスを使用し、 H_2 ガスでは8元素(¹¹B, ²⁷Al, ⁵⁵Mn, ⁵⁶Fe, ⁷⁸Se,

Vol. 29 No. 3 (2004)

表5 コリジョン型 ICP-MS の検出限界

一主友	検出限界(μg/l)							
儿杀石	反応ガス無	H2ガス	He ガス					
¹¹ B	0.060	0.048	0.081					
²⁷ Al	0.048	0.018	0.195					
⁵² Cr	0.060	0.006	0.006					
⁵⁵ Mn	0.030	0.003	0.009					
⁵⁶ Fe		0.030	_					
⁶⁰ Ni	0.009	0.048	0.009					
⁶⁵ Cu	0.009	0.027	0.009					
⁶⁶ Zn	0.018	0.030	0.018					
⁷⁵ As	0.004	0.012	0.004					
⁷⁸ Se	0.096	0.012	0.096					
⁹⁵ Mo	0.008	0.008	0.005					
111Cd	0.008	0.005	0.009					
121 Sb	0.002	0.002	0.002					
²⁰⁸ Pb	0.004	0.004	0.004					
¹²¹ Sb ²⁰⁸ Pb	0.002 0.004	0.002 0.004	0.002 0.004					

検出限界:7回測定から次式で求めた

検出限界= 3×(ブランクの標準偏差)×(標準溶液の濃度)

(標準溶液のカウント-ブランクのカウント

¹¹¹Cd, ¹²¹Sb, ²⁰⁸Pb), He ガスでは6元素(⁵²Cr, ⁶⁰Ni, ⁶⁵Cu, ⁶⁶Zn, ⁷⁵As, ⁹⁵Mo)を測定することにした。

3.3 検量線範囲

各元素の標準溶液 $(0.1-12\mu g/l)$ を用い,反応 ガスとして「H₂を使用した場合」と「Heを使用 した場合」の各モードで,検量線を作成した。2 つのモードを切り替えながら測定した場合の検量 線は, $\gamma=0.9999$ 以上の良好な直線性を示し,⁵⁶Fe 及び⁷⁵Asを含めた一斉分析が可能であった(**図1**)。

3.4 共存塩類の影響

海水や底質分析を想定し、1µg/lの測定元素に 対し、10万倍濃度の塩類が試料中に共存した場合 の測定値への影響について検討した。とくに、「反 応ガスなし」モードで影響が大きい5元素の結果 を**表6**に示した。

「反応ガスを使用しない場合」に,56Feの測定 がまったく不可能であることは,上記の検討で示 したが,「反応ガスを使用した場合」にはこの56Fe 分析が可能になった。

⁶⁰Ni, と⁶⁵Cu は, Na⁺, Ca²⁺, Cl⁻, SO4²⁻が共 存すると影響を受けるが,「反応ガスを使用した 場合」には問題なく測定可能であった。⁷⁵As は, 「反応ガスを使用した場合」のコリジョン型 ICP-

文

5.06% ..**€**₩2 z. LUEICS ⁵⁵Mn ¹¹B ²⁷A1 01.31 05.3 88.0 rsb 12.6 1.55-68 111Cd ⁵⁶Fe ⁷⁸Se . E.a 1.02 6.01 8803) 4.05 反応ガス(H₂) 121Sb ²⁰⁸Pb 8.05 (2.0) 807 9 sah 8.01 12.00 28.000 apr ⁵²Cr ⁶⁰N i 65Cu 6,0) (7.30 200 (10) 6,00 33.00 12.00 2000 xab ⁶⁶Zn ⁹⁵Mo ⁷⁵As 2,50 12,30 (0,01 apr 9.00 Y.00 8.00 NO 1.05 反応ガス (He)

図1 コリジョン型 ICP-MS の検量線

元素	反応ガスの	共存塩類100(mg/l)						
儿杀	有無	Na+	Ca^{2+}	Cl-	SO_4^{2-}			
⁵⁶ Fe	有	0.98	1.16	1.01	0.90			
	無	不可	不可	不可	不可			
⁶⁰ Ni	有	1.01	1.07	0.99	0.99			
	無	0.89	1.53	0.98	0.92			
⁶⁵ Cu	有	0.95	0.99	0.96	0.92			
	無	1.03	1.11	0.85	0.89			
⁷⁵ As	有	0.97	1.00	1.00	0.94			
	無	1.07	1.00	1.11	0.96			
⁷⁸ Se	有無	0.96 0.36	1.04 0.86	0.99 0.69	0.91 0.87			

表6 共存塩類の影響

1) 目的元素濃度は1(µg/1)で検討

MSでは濃度補正を行わずに分析可能であった。⁷⁸Seはいずれかの塩類が共存しただけでも, 測定誤差が生じてくるが,「反応ガスを使用した 場合」には塩類の影響を受けることなく,精度良

表7 海水の標準添加回収試験

一一十二	海水濃度	回収量	回収率
儿杀	$(\mu g/l)$	$(\mu g/l)$	(%)
¹¹ B	4740	5740	100
²⁷ Al	2.46	15.46	130
⁵² Cr	0.24	10.25	100
⁵⁵ Mn	0.37	10.5	101
⁵⁶ Fe	0.22	9.89	97
⁶⁰ Ni	0.41	9.45	90
⁶⁵ Cu	8.10	9.92	91
⁶⁶ Zn	1.77	13.45	110
⁷⁵ As	1.56	11.03	95
⁷⁸ Se	8.14	16.82	88
⁹⁵ Mo	10.34	20.23	99
¹¹¹ Cd	0.06	11.27	112
121 Sb	0.92	10.84	99
²⁰⁸ Pb	0.25	9.87	96

1) 添加濃度:¹¹B;1000(µg/l), その他;10(µg/l)

2) 標準物質を添加した試料の測定結果を回収量とする

く測定することが可能であった。

以上,通常の「反応ガスを使用しない場合」の ICP-MSでは,測定誤差が大きな元素でも,「反応ガスを使用した場合」の本法で精度よく測定で きることが確認された。

3.5 海水への適用

本法により,海水中14元素の一斉分析による標 準添加回収試験を行った(**表 7**)。

標準添加回収試験は、海水濃度が高い¹¹Bは 1000µg/l,他の元素についてはそれぞれ10µg/l 濃度を添加したものを使用し、本法で実際に測定 する際には、10倍に希釈した検液で測定した。

その結果,²⁷Alが130%の高い回収率であった が,報告下限値は100µg/lであり,実試料の測定 でほとんど問題にならない誤差である。⁷⁸Seと ¹¹¹Cdでは回収率が±10%をわずかに超えたが,こ の濃度レベルの測定では許容できる誤差範囲であ ると考えられる。他の元素についても本法で測定 した場合の測定値のばらつきは小さく,標準添加 回収試験の回収率(88~130%)が良好であること から,海水分析への適用性が高いことが分かっ た。

3.6 底質試料の分解

底質の分解法は,酸による加熱分解法が公定法 (底質調査方法⁸⁾)として採用されている。そこで

表8 マイクロウェーブの分解と公定法の比較(111Cd)

	マイク	ロウェー	・ブ分解	公定注	法による	分解
No.	濃度	回収量	回収率	濃度	回収量	回収率
	(mg/kg)	(mg/kg)	(%)	(mg/kg)	(mg/kg)	(%)
1	0.14	1.17	102	0.15	1.23	108
2	0.14	1.13	98	0.16	1.18	103
3	0.15	1.21	106	0.14	1.17	102
4	0.15	1.13	98	0.20	1.17	102
5	0.16	1.13	98	0.21	1.22	107
6	0.15	1.13	98	0.22	1.18	103
mean	0.15	1.15	100	0.18	1.19	104
SD	0.0	0.0	3.3	0.0	0.0	2.9
CV	5.1	2.9	3.3	19.5	2.2	2.5

表9 マイクロウェーブ分解と公定法のブランク値

元素	マイクロウ	ェーブ分解	公定法による分解		
	AV (µg/l)	SD	AV (µg/l)	SD	
⁶⁵ Cu	0.686	0.09	1.426	0.36	
⁶⁶ Zn	3.418	0.84	9.057	4.95	
⁷⁵ As	0.000	0.00	0.033	0.03	
¹¹¹ Cd	0.000	0.00	0.032	0.02	
²⁰⁶ Pb	0.095	0.04	4.292	6.71	

 AV:ブランク6個の測定値の平均値 SD:ブランク6個の測定値の標準差値

1)標準を1 mg/kg 添加

2) 標準物質を添加した試料の測定結果を回収量とする

		⁶⁵ Cu ³⁾			${}^{66}Zn^{3)}$			$^{75}\mathrm{As}^{4)}$			¹¹¹ Cd ⁵⁾			²⁰⁶ Pb ⁴⁾	
No.	濃度1)	回収量2)	回収率	濃度1)	回収量2)	回収率	濃度1)	回収量2)	回収率	濃度1)	回収量2)	回収率	濃度1)	回収量2)	回収率
	(mg/kg)	(mg/kg)	(%)	(mg/kg)	(mg/kg)	(%)	(mg/kg)	(mg/kg)	(%)	(mg/kg)	(mg/kg)	(%)	(mg/kg)	(mg/kg)	(%)
1	41.8	224	90	82.5	268	90	8.19	26.1	90	0.14	1.17	102	16.6	36.4	99
2	45.0	232	94	85.2	273	93	7.79	25.9	89	0.14	1.13	98	17.7	36.3	98
3	43.4	228	92	83.6	273	93	8.33	26.9	94	0.15	1.21	106	16.8	38.8	111
4	43.2	228	92	85.1	260	86	8.15	25.2	86	0.15	1.13	98	16.7	34.5	89
5	44.0	224	90	89.7	277	95	8.34	26.3	91	0.16	1.13	98	16.7	36.5	100
6	42.9	225	91	84.1	276	94	7.82	26.2	90	0.15	1.13	98	16.5	36.4	99
mean	43.4	227	92	85.0	271	92	8.10	26.1	90	0.15	1.15	100	16.8	36.5	99
SD	1.1	3.1	1.5	2.5	6.5	3.2	0.2	0.5	2.7	0.0	0.0	3.3	0.4	1.4	6.9
CV	2.5	1.4	1.7	2.9	2.4	3.5	3.0	2.1	3.0	5.1	2.9	3.3	2.6	3.8	6.9

表10 底質の標準添加回収試験

1) 標準物質を添加していない試料の測定結果を濃度とする

標準を200mg/kg
4)標準を20mg/kg 添加

本法で使用したマイクロウェーブ加熱分解法と公 定法の分析精度を比較検討した。すべての元素で マイクロウェーブ分解法および公定法による添加 回収試験の結果に大きな差は認められなかった (表8)。さらに全般的に,マイクロウェーブ分解 では公定法に比べて試薬ブランク値が小さい傾向 がみられた(表9)。公定法における試薬ブランク 値は,環境基準の定量下限値を求めるのに影響を 及ぼすレベルではなかった。

分解操作に2日前後を要する公定法に比べて, マイクロウェーブ加熱分解法は約1時間で完了 し,ルーチン分析での有用性が高いと考えられ た。 (標準物質を添加した試料の測定結果を回収量とする
(標準を1mg/kg添加)

3.7 底質への適用

底質分析項目の5元素に対し,各6回繰り返し の標準添加回収試験を行った。標準添加回収試験 の回収率は5元素ともほぼ90%以上の高い回収率 であった(**表10**)。

マイクロウェーブ分解法を用いた本法は,測定値 のバラツキもほぼ CV5%以下と小さく,底質分 析への適用性が高いという結果であった。

4.まとめ

従来の公定法(原子吸光法, ICP-発光法)では, 対象とした環境測定項目の14元素を一斉分析する ことは不可能であった。さらに従来法では, 試料

171

Vol. 29 No. 3 (2004)

文

の濃縮操作が必要で分析操作が煩雑であり, ⁷⁵As, ⁷⁸Se, ¹²¹Sb などは還元気化法の別分析法で 分析しなければならないといった欠点があっ た⁹⁾。

コリジョン型 ICP-MS は、今回対象とした元素 についてみれば、環境水および底質試料でも、反 応ガスの種類と内標準を選択することで、56Fe を 含めた一斉分析が可能であった。底質分解に用い たマイクロウェーブ加熱分解法は、酸分解法に比 べて分析精度と迅速性に優れており、ルーチン分 析に最適な方法と判断された。

一参 考 文 献一

- 齋藤憲光,林崎伸師,遠藤美帆,佐々木博也,中村環, 千葉和久:水質試験へのICP-MS分析法の適用,水道協 会雑誌,68,23-31(2000).
- 2) 松本博孝,保倉明子,原口紘炁:誘導結合プラズマ発光 分析法及び誘導結合プラズマ質量分析法による緑茶葉試 料の多元素定量分析と化学形態別分析,分析化学,49, 397-404(2000).

- 3) 保倉明子,小栗佐知子,松本博孝,原口紘炁:誘導結合 プラズマ発光分析法及び誘導結合プラズマ質量分析法に よる野菜試料の多元素定量分析,分析化学,49,387-396 (2000).
- 4) 衛蓉,池田克弥,竹内章浩,定免慶,山中克仁,猿渡英 之,原口紘炁:誘導結合プラズマ発光分析法及び誘導結 合プラズマ質量分析法による湖底堆積物試料の多元素定 量分析,分析化学,48,365-375(1999).
- 5) 小倉光夫:誘導結合プラズマ質量分析法による環境試料 中のウランの定量,環境化学,9,939-945(1999).
- 6) Miguens-Rodriguez M, Pickford R, Thomas-Oates JE, Pergantis SA: Arsenosugar identification in seaweed extracts using high-performance liquid chromatography/electrospray ion trap mass spectrometry, *RapidCommum Mass Spectrom*, **16**(5), 323–331(2002)
- Lippimcott J, Fattor TJ, Lemon DD, Apostol I: Application of native-state electrospray mass spectrometry to identify zinc-binding sites on enginieered hemoglobin, *Anal Biochem*, 284 (2), 247–255 (2000).
- 8) 環境庁:底質調査方法 水質保全局長通達(昭和63年環 水管第127号)
- S.H.Tan and G. Horlick: Background spectral features in inductively coupled plasma/mass spectrometry, *Appl. Spectroscopy*, 40 (2), 445–460 (1986)